Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shang Shan ${ }^{\text {a }}$ and Zheng Fan ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemical Engineering, West Branch, Zhejiang University of Technology, People's Republic of China, and ${ }^{\text {b }}$ College of Biological and Environmental Engineering, Zhejiang University of Technology, People's Republic of China

Correspondence e-mail:

shanshang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.155$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Acetophenone 2,4,6-trinitrophenylhydrazone

Molecules of the title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{6}$, display an E configuration about the $\mathrm{C}=\mathrm{N}$ bond and an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The crystal packing is consolidated by aromatic $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

As some phenylhydrazone derivatives have been shown to be potential DNA-damaging or mutagenic agents (Okabe et al., 1993), a series of nitrophenylhydrazone derivatives has been synthesized in our laboratory in order to investigate the relationship between structure and bioactivity (Shan et al., 2003). As part of this ongoing work, we synthesized the title trinitrophenylhydrazone compound, (I) (Fig. 1), and present its crystal structure here.

(I)

The molecule of (I) displays an E configuration, the two benzene rings being located on opposite sides of the $\mathrm{C} 7=\mathrm{N} 5$ double bond. The non- H atoms of the molecule are roughly coplanar, except for the $\mathrm{N} 3 / \mathrm{O} 5 / \mathrm{O} 6$ nitro group which is nearly perpendicular to the mean plane of the molecule with a dihedral angle of 78.96 (12) ${ }^{\circ}$. The dihedral angle between the two benzene ring planes is 5.11 (9) ${ }^{\circ}$, An intramolecular N $\mathrm{H} \cdots \mathrm{O}$ bond occurs between the imine NH group and a nitro O atom (Table 2).

The $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 6$ bonds, which are adjacent to the imino N4 atom, are significantly longer than the average distance of 1.371 (3) A for the other $\mathrm{C}-\mathrm{C}$ bonds in the same benzene ring (Table 1). This is consistent with the situation found in similar trinitrophenylhydrazone compounds reported recently (Fan et al., 2005; Shan et al., 2006).

An off-set overlapping arrangement of nearly parallel benzene rings is observed (Fig. 2) in the crystal packing of (I). The centroid-to-centroid separation of 3.7825 (19) Å between nearly parallel [dihedral angle $5.11(9)^{\circ}$] C1-benzene and $\mathrm{C} 9^{\text {iv }}$ -

Received 5 June 2006
Accepted 5 June 2006

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), and a dashed line showing the intramolecular hydrogen bond.

Figure 2
A diagram showing the $\pi-\pi$ stacking between benzene rings in (I) [symmetry code: (iv) $\frac{3}{2}-x, 1 / 2+y, \frac{1}{2}-z$].
benzene rings (for symmetry code see Fig. 2) and the separation of 3.486 (3) \AA from the $\mathrm{C} 9^{\text {iv }}$ atom to the C1benzene plane suggest the existence of $\pi-\pi$ stacking in (I). Finally, several weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions occur in (I) (Table 2).

Experimental

2,4,6-Trinitrophenylhydrazine ($0.24 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in ethanol (18 ml) and acetic acid $(0.3 \mathrm{ml})$ was added slowly with stirring. The solution was heated at about 333 K for several minutes until
it became clear. Acetophenone ($0.12 \mathrm{~g}, 1 \mathrm{mmol}$) was added dropwise with continuous stirring, and the resulting mixture was refluxed for 4 h . When the solution cooled to room temperature, red microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice using a mixed solvent of acetone/ethanol (3:1 v / v), to obtain well faceted red single crystals of (I).

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{6}$
$M_{r}=345.28$
Monoclinic, $P 2_{\mathrm{h}} / n$
$a=10.318$ (4) A
$b=13.850$ (5) \AA
$c=10.385$ (4) \AA
$\beta=93.952$ (12)
$V=1480.5(10) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: none
14339 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.155$
$S=0.96$
3395 reflections
228 parameters
H -atom parameters constrained
$Z=4$
$D_{x}=1.549 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, red
$0.32 \times 0.29 \times 0.26 \mathrm{~mm}$

3395 independent reflections
1634 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0859 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.25 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0074 (18)

Table 1
Selected bond lengths (\AA).

N4-N5	$1.372(2)$	C2-C3	$1.379(3)$
C1-N4	$1.342(2)$	C3-C4	$1.364(3)$
C7-N5	$1.294(2)$	C4-C5	$1.379(3)$
C1-C2	$1.422(3)$	C5-C6	$1.360(3)$
C1-C6	$1.421(3)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O} 1$	0.86	1.94	$2.584(2)$	130
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.93	2.59	$3.388(3)$	144
$\mathrm{C} 13-\mathrm{H} 13 \cdots 1^{\mathrm{ii}}$	0.93	2.53	$3.352(3)$	148
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O}^{\text {iii }}$	0.96	2.58	$3.538(4)$	174
Symmetry codes: (i)	$-x+2,-y+1,-z+1 ;$	(ii)	$-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;$	(iii)
$-x+1,-y+1,-z+1$.				
l				

Methyl H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and the torsion angle was refined to fit the electron density; $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined in the riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC \& Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for

organic papers

Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the Natural Science Foundation of Zhejiang Province of China (grant No. M203027).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Fan, Z., Shan, S. \& Xu, D.-J. (2005). Acta Cryst. E61, o2758-o2760.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Okabe, N., Nakamura, T. \& Fukuda, H. (1993). Acta Cryst. C49, 1678-1680
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
Shan, S., Fan, Z. \& Xu, D.-J. (2006). Acta Cryst. E62, o1123-o1125.
Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. \& Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

